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Multidimensional pattern formation has an infinite number of constants of motion
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Extending our previous work on two-dimensional growth for the Laplace equation [M. B. Mineev,
Physica D 43, 288 (1990)] we study here multidimensional growth for arbitrary elliptic equations,
describing inhomogeneous and anisotropic pattern-formation processes. We find that these nonlinear
processes are governed by an infinite number of conservation laws. Moreover, in many cases all dynam-
ics of the interface can be reduced to the linear time dependence of only one “moment” M,, which corre-
sponds to the changing volume, while all higher moments M, are constant in time. These moments have

" a purely geometrical nature, and thus carry information about the moving shape. These conserved quan-
tities [Egs. (7) and (8) of this article] are interpreted as coefficients of the multipole expansion of the
Newtonian potential created by the mass uniformly occupying the domain enclosing the moving inter-
face. Thus the question of how to recover the moving shape using these conserved quantities is reduced
to the classical inverse potential problem of reconstructing the shape of a body from its exterior gravita-
tional potential. Our results also suggest the possibility of controlling a moving interface by appropriate-

ly varying the location and strength of sources and sinks.

PACS number(s): 47.15.Hg, 68.10.—m, 68.70.+w, 47.20.Hw

Many seemingly different pattern formation processes
have much in common, both in their mathematical
description and in their physical behavior. Among them
are the famous Stéfan problem (freezing of liquid), flow
through porous media, the Rayleigh-Taylor instability,
electrodeposition of metals, corrosion, combustion,
growth of bacterial colonies, dynamics of earth cracks,
diffusion-limited aggregation (DLA), etc. The common
feature shared by these processes is the existence of an
evolving interface. The problem of the evolution of the
interface in these processes attracts considerable atten-
tion (see, for example, Ref. [1]) both because of its great
practical importance and because of its connections with
such fields as dynamical chaos, nonequilibrium physics,
and fractal growth (see DLA [2]).

A general scheme for these processes is as follows.
There is a linear partial differential equation (PDE) (fre-
quently of the second order) for the scalar field determin-
ing the process. For example, this is the diffusion equa-
tion for the Stéfan problem and the Laplace or Helmholtz
equations for electrodeposition. This scalar field is tem-
perature in the Stéfan problem, pressure in flows through
porous media, concentration of the nutrient for bacterial
growth, electrostatic potential in electrodeposition, prob-
ability of the next jump in DLA, etc. Appropriate
boundary conditions are imposed both on the moving
part of the boundary (the interface) and the nonmoving
part of the boundary (the outer walls). In addition, a law
of interface motion is given in terms of the local behavior
of the main scalar field. (Typically the local velocity of
the interface is proportional to the gradient of the scalar
field near the interface.) The main question is ‘“what is
the evolution of the interface?”

It is remarkable that some of the problems mentioned
above are exactly solvable in two dimensions [3-5],
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despite the nonlinearity of these processes. These prob-
lems were solved with the help of time-dependent confor-
mal mapping, which cannot be extended to three dimen-
sions (3D), except for a few trivial cases. In 2D it was
found that such processes as two-phase flows in porous
media, electrodeposition, and slow solidification in a su-
percooled liquid or from a supersaturated binary solution
are governed by an infinite number of constants of
motion, which were obtained explicitly in several special
cases [3—5]. These constants of motion are related to the
conserved moments proposed by Richardson [6]. This in-
variance is quite subtle and disappears when realistic
physical perturbations such as surface tension or random
noise are added.

In the 3D case very few exact analytical results are
known: a constant-velocity paraboloid [7] and a self-
similarly growing ellipsoid [8]. The only known way to
obtain these solutions is by using one of the 11 coordinate
systems in which the 3D Laplace equation is separable
[10]. One then considers level surfaces as moving inter-
faces. It is clear that this method does not work when
the shapes are time dependent. The traditional attitude is
that the main obstacle in obtaining nonperturbative exact
results in 3D is the lack of (nontrivial) conformal map-
pings unlike in the 2D case. But is not this statement too
strong?

This article is a natural extension of previous work [3]
to more general and realistic multidimensional growth
problems; and not only for the Laplace equation as was
done in [3-5], but also for arbitrary elliptic equations
describing, for example, inhomogeneous and anisotropic
diffusion in solidification, inhomogeneous dielectric func-
tions and screening in electrodeposition, and inhomo-
geneous viscosity for flows through porous media. It
turns out that these nonlinear processes also possess re-
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markable properties (an infinite number of conservation
laws) similar to the ones mentioned in [3,6] for the 2D
Laplacian case, and these properties do not depend on
the dimension of the process considered. Thus we show
that, contrary to the traditional attitude, we do not need a
conformal mapping for this invariance. Rather this in-
variance originates from the more general property: the
elliptic nature of the equation for the scalar field.

Let us state now the following D-dimensional problem:

L (u)=div[p(r)gradu (r)]+q(r)u(r)=0 (1)

for r€EB CRP, where the domain B is bounded by the
nonmoving exterior boundary X, and by the moving inte-
rior boundary I'(z) (¢ is time), which is the interface
separating the domains B and 4. An interior domain A
contains the origin and is surrounded by the moving in-
terface I'(z), as shown in Fig. 1. Here p and g are given
functions of r=(x,x,,...,xp). The boundary condi-
tions imposed on u are

3,uls=G(3), 2)
u(T(1))=0 . 3)

The left-hand side (lhs) of (2) means the normal com-
ponent of grad(u) evaluated at =.

There can also exist pointlike sources and sinks in the
domain B located at r, and having strengths s,

(k=1,2,...,N), so that near r;,, u(r) diverges and
satisfies

u =s, /Ir—r,|° “2+smooth function 4)
if D >2,or

u =s,In|r—r; | +smooth function
if D =2. The law of motion of I'(z) is
Unz_p(r)anuh‘(t) ’ 5

r(t+dt)

FIG. 1. The domain B is bounded by the nonmoving bound-
ary 2 and by the moving boundary I'(¢), which is the interface
separating the domains B and A. The interior domain A4 con-
tains the origin. The interface I'(¢), depicted at times ¢ and
t +dt, moves with velocity v (and normal velocity v,). Also
shown are pointlike sources or sinks, which may exist in the
domain ™ located at r; -and having strengths s,
(k=1,2,...,N). In this figure, N =6.
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where the lhs is the normal component of the velocity of
().

Equations (1) and (5) together with the boundary con-
ditions (2)—(4) complete the mathematical description of
the motion of I'(z). If, for example, D =3, p (r)=const,
and ¢ (r)=0, this describes slow solidification or two-
phase flow in homogeneous porous media.

In this paper, we show that, in spite of the complexity
and nonlinearity of the processes described by Egs.
(1)—(5), these processes are governed by an infinite num-
ber of conservation laws. Namely, if the outer boundary
3 is very far from the origin there is an infinite set of
numbers C, ({ =D —1,D,D +1, ..., « ) defined as

_daM;, 4 D
= T a -UB‘W rl’ ©

which are conserved during the evolution of the hyper-
surface I'(¢), and equal

,n_D/Z N

C=2——
! r(D/z),El

Skp(l'k )¢1(fk) . (7

(We do not consider here the passing of the interface
through the singularities.)

Here, I'(n) is the gamma function [rot the interface
I'(#)] and ¢, is the arbitrary solution of L (u)=0, which
decays at infinity no slower than » ~/ and has singularity
only at the origin. The functions 1, as well as quantities
C; and M, are labeled in general by more than one num-
ber (which is / here). See, for example, Eq. (11) below.
But for simplicity and without the loss of generality we
drop all labels except the / almost everywhere. If g (r)=0
we have one more conserved quantity: C,, which is the
rate of the change of the volume of B when L is Lapla-
cian, and which satisfies

:dM() deDr]

d
C =2
O gy dt

77_D/2 N

:zmk}::l sep (1) + fEG(Z)p(Z)dZ , (8

Here we took y,=1, which is a solution of L (u)=0 when
g (r)=0.

We think that the knowledge of C;’s together with the
initial M;’s defined in (6) (the latter are uniquely deter-
mined by the initial shape of interface) could describe the
whole moving shape in many important physical cases.
We consider Egs. (7) and (8) to be the main result of this
work.

Formula (7) follows immediately from the following
considerations: Since

D _ D _
fB(tert)lpld r fB(t)¢,d T fr(t)¢lvndrdt,
we have
d b ]_
dt [fa(z>¢]d r] frmwlv"dr'

Further, because of (5), this equals fm)( —p¥,0,u)dT;
and, finally, in view of (3), this expression is
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d
dt ”Bm%d”rl
- fr(,)p(“anll’z—lbzanu)dl“ . ©)

Applying Gauss’s theorem to the vector field
p(u grady, —¢,gradu) we find that the rhs of Eq. (9) is
given by

deiv[pu grady, —p i, gradu 1d °r
+f2p(ua,,1,b,-—¢,anu)d2

N
+k§1 fykp(ua,,w,—¢,a,,u)dz ) (10)

Here the summation is over the pointlike charges s;, and
Y denotes the surface of the infinitesimal hypersphere
around the 1.

Considering the rhs of (10) one can see that (i) the
volume integral over B vanishes because of (1); (ii) the
surface integral over = also vanishes if the outer bound-
ary X is far removed from the center and if ¥; decays at
infinity stronger than 1/r° 72 [when ¢, =1, this integral
is not zero but equals f s G(2)p(2)dZ, as it is in the rhs
of (8)]; (iii) the contribution of the first integrand to the
surface integral over the y, is zero, while the integral
from the second term equals

1TD/2

_zmskp(rk W),
since p(r) and v,(r) are regular near the r; and due to
Gauss’s theorem.

Thus the rhs of (10) equals the rhs of (7) [or (8) when
g (r)=0 and / =0], so we have obtained the infinite set of
the conserved quantities C;, if the sources and sinks are
nonmoving (i.e., when s; and r, are time independent).
Moreover, if g (r)=0 and no pointlike singularities are in
the domain B (i.e., if all s, =0), then all of the dynamics
of the interface I'(t) have been reduced to the linear time
dependence of only one ‘“moment,” M,, which is the
volume of the phase B if L is Laplacian. All higher mo-
ments M, are constant in time. Note also that all mo-
ments M; have a purely geometrical nature, and thus car-
ry information about the moving shape.

It is worth considering the special case when the opera-
tor L is Laplacian (p =1, ¢ =0) [9]. For D =2, if the ¢,
are chosen as ¥, =z, where z =x +iy, these integrals
coincide with those previously found in explicit form [3]
via the coefficients of the appropriate conformal map.
These are analogs of the Richardson moments, whose in-
variance was found earlier for the interior Hele-Shaw
problem [6].

In the 3D Laplacian case, one can choose the 1, to be a
set of spherical functions:

Y =P{, (0)e™¢/r! . (an

Here, 7, 6, and ¢ are the polar coordinates and P;™(8)
are the associated Legendre polynomials. In this case, we
have a clear physical interpretation of the moments M|™.
Namely, they are the coefficients of the multipole expan-
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sion of the Newtonian potential at an arbitrary point of
the empty interior domain A4, if the potential is created
by the mass uniformly occupying the domain B. Thus
the question of whether one can recover the moving
shape using only the numbers M, introduced in (7) is now
reduced to the classical inverse potential problem [11] for
the reconstruction of the shape of a body of constant den-
sity from its Newtonian potential. Our case corresponds
to the exterior problem (where the potential is given in
the empty hollow of the body: in the phase A4). We be-
lieve that the connection between pattern formation stud-
ies and the inverse potential problem is especially impor-
tant and deserves close attention, but we do not discuss
this problem here. Rather we merely note that in 3D (un-
like the 2D case) there is no description of a body (with
the exception of the sphere) in terms of a finite number of
nonzero moments M,. (For a detailed description of
these difficulties see [12].)

Note that it is also possible in the general elliptic case
(when L is not Laplacian) to preserve the interpretation
of the conserved quantities M, as coefficients of the or-
thogonal expansion by choosing the Green’s function
G (r,r;) of the operator L to be the integrand in (7), since
G (r,1,) satisfies the conditions imposed on the ¢, if rEB
and r; € A. Using the Green’s-function expansion and by
choosing the orthogonal set of the eigenfunctions ; of
L (1;)=0 bounded at infinity and divergent at the origin
and the complementary set of eigenfunctions 1, of the
same equation but with opposite asymptotic behavior, we
have

o d
UD=3 di0) g [fB ¥y(r)d P,

We remark that our main result (7) holds also for
time-dependent s, and r, [since we never used the time
independence of s, and r, in obtaining (7)]. Although
the C; are no longer conserved, the problem is still inte-
grable, since C; are known functions of time (if the time
dependence of s, and r; is given). Thus the moments M,
are easily controlled parameters, namely, they are just
primitives of the time-dependent rhs of (7). In this way,
one might be able to govern the motion of the interface
by the proper choice of the s, and r

It should also be mentioned that there could be a few
exceptions among the C;’s (only one in the 3D Laplacian
case) for which Eq. (7) is not valid, and thus they may not
be conserved. The nonconserved C;’s correspond to the
¥,’s decaying at infinity but at a rate not stronger than
r27DP) For the 3D Laplacian case the only nonconserved
quantity is C,, which corresponds to ¥;=r " !. Since we
do not know the time dependence of C;, one could sup-
pose that the description of the interface is now less com-
plete. However, although C; is not conserved, we have
the conserved quantity C, [see Eq. (8)]. In other words,
we think that the set {M;,M,,M;, ...} describes the
shape with the same degree of completeness as the set
{My,M,,M,,...}. This question concerning noncon-
served quantities among the C,’s does not arise for the in-
terior problem when the scalar field u is given in the
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phase enclosed by the moving interface I'(¢) (in our case
in A instead of B).

In conclusion we pose several questions that arise from
these studies and that we believe merit attention.

(1) Does the relation expressed by (7) really mean com-
plete integrability of the multidimensional growth?

(2) If yes, to which nonlinear evolutionary PDE’s do
these constants C, correspond?

(3) Is there a Hamiltonian structure for these systems?

(4) Do finite-time singularities: (cusps) exist here, as in
the 2D case? If yes, how may surface tension regularize
them?

(5) How can one recover the moving shape from the
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given set of moments M;?
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